Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Convolution Bounds on Quantile Aggregation (2007.09320v5)

Published 18 Jul 2020 in q-fin.RM, math.OC, math.PR, and q-fin.MF

Abstract: Quantile aggregation with dependence uncertainty has a long history in probability theory with wide applications in finance, risk management, statistics, and operations research. Using a recent result on inf-convolution of quantile-based risk measures, we establish new analytical bounds for quantile aggregation which we call convolution bounds. Convolution bounds both unify every analytical result available in quantile aggregation and enlighten our understanding of these methods. These bounds are the best available in general. Moreover, convolution bounds are easy to compute, and we show that they are sharp in many relevant cases. They also allow for interpretability on the extremal dependence structure. The results directly lead to bounds on the distribution of the sum of random variables with arbitrary dependence. We discuss relevant applications in risk management and economics.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube