Papers
Topics
Authors
Recent
2000 character limit reached

Streaming ResLSTM with Causal Mean Aggregation for Device-Directed Utterance Detection

Published 17 Jul 2020 in eess.AS and cs.SD | (2007.09245v1)

Abstract: In this paper, we propose a streaming model to distinguish voice queries intended for a smart-home device from background speech. The proposed model consists of multiple CNN layers with residual connections, followed by a stacked LSTM architecture. The streaming capability is achieved by using unidirectional LSTM layers and a causal mean aggregation layer to form the final utterance-level prediction up to the current frame. In order to avoid redundant computation during online streaming inference, we use a caching mechanism for every convolution operation. Experimental results on a device-directed vs. non device-directed task show that the proposed model yields an equal error rate reduction of 41% compared to our previous best model on this task. Furthermore, we show that the proposed model is able to accurately predict earlier in time compared to the attention-based models.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.