Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Object Detection with Selective Self-supervised Self-training (2007.09162v2)

Published 17 Jul 2020 in cs.CV

Abstract: We study how to leverage Web images to augment human-curated object detection datasets. Our approach is two-pronged. On the one hand, we retrieve Web images by image-to-image search, which incurs less domain shift from the curated data than other search methods. The Web images are diverse, supplying a wide variety of object poses, appearances, their interactions with the context, etc. On the other hand, we propose a novel learning method motivated by two parallel lines of work that explore unlabeled data for image classification: self-training and self-supervised learning. They fail to improve object detectors in their vanilla forms due to the domain gap between the Web images and curated datasets. To tackle this challenge, we propose a selective net to rectify the supervision signals in Web images. It not only identifies positive bounding boxes but also creates a safe zone for mining hard negative boxes. We report state-of-the-art results on detecting backpacks and chairs from everyday scenes, along with other challenging object classes.

Citations (62)

Summary

We haven't generated a summary for this paper yet.