INDRA: Intrusion Detection using Recurrent Autoencoders in Automotive Embedded Systems (2007.08795v1)
Abstract: Today's vehicles are complex distributed embedded systems that are increasingly being connected to various external systems. Unfortunately, this increased connectivity makes the vehicles vulnerable to security attacks that can be catastrophic. In this work, we present a novel Intrusion Detection System (IDS) called INDRA that utilizes a Gated Recurrent Unit (GRU) based recurrent autoencoder to detect anomalies in Controller Area Network (CAN) bus-based automotive embedded systems. We evaluate our proposed framework under different attack scenarios and also compare it with the best known prior works in this area.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.