Algebraic slice spectral sequences (2007.08682v3)
Abstract: For certain motivic spectra, we construct a square of spectral sequences relating the effective slice spectral sequence and the motivic Adams spectral sequence. We show the square can be constructed for connective algebraic K-theory, motivic Morava K-theory, and truncated motivic Brown-Peterson spectra. In these cases, we show that the $\mathbb{R}$-motivic effective slice spectral sequence is completely determined by the $\rho$-Bockstein spectral sequence. Using results of Heard, we also obtain applications to the Hill-Hopkins-Ravenel slice spectral sequences for connective Real K-theory, Real Morava K-theory, and truncated Real Brown-Peterson spectra.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.