Papers
Topics
Authors
Recent
2000 character limit reached

Co-Attention for Conditioned Image Matching (2007.08480v2)

Published 16 Jul 2020 in cs.CV

Abstract: We propose a new approach to determine correspondences between image pairs in the wild under large changes in illumination, viewpoint, context, and material. While other approaches find correspondences between pairs of images by treating the images independently, we instead condition on both images to implicitly take account of the differences between them. To achieve this, we introduce (i) a spatial attention mechanism (a co-attention module, CoAM) for conditioning the learned features on both images, and (ii) a distinctiveness score used to choose the best matches at test time. CoAM can be added to standard architectures and trained using self-supervision or supervised data, and achieves a significant performance improvement under hard conditions, e.g. large viewpoint changes. We demonstrate that models using CoAM achieve state of the art or competitive results on a wide range of tasks: local matching, camera localization, 3D reconstruction, and image stylization.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.