Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive Grids in the Context of Algebraic Stabilizations for Convection-Diffusion-Reaction Equations

Published 16 Jul 2020 in math.NA and cs.NA | (2007.08405v4)

Abstract: Three algebraically stabilized finite element schemes for discretizing convection-diffusion-reaction equations are studied on adaptively refined grids. These schemes are the algebraic flux correction (AFC) scheme with Kuzmin limiter, the AFC scheme with BJK limiter, and the recently proposed Monotone Upwind-type Algebraically Stabilized (MUAS) method. Both, conforming closure of the refined grids and grids with hanging vertices are considered. A non-standard algorithmic step becomes necessary before these schemes can be applied on grids with hanging vertices. The assessment of the schemes is performed with respect to the satisfaction of the global discrete maximum principle (DMP), the accuracy, e.g., smearing of layers, and the efficiency in solving the corresponding nonlinear problems.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.