Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On zero-sum spanning trees and zero-sum connectivity (2007.08240v1)

Published 16 Jul 2020 in math.CO

Abstract: We consider $2$-colourings $f : E(G) \rightarrow { -1 ,1 }$ of the edges of a graph $G$ with colours $-1$ and $1$ in $\mathbb{Z}$. A subgraph $H$ of $G$ is said to be a zero-sum subgraph of $G$ under $f$ if $f(H) := \sum_{e\in E(H)} f(e) =0$. We study the following type of questions, in several cases obtaining best possible results: Under which conditions on $|f(G)|$ can we guarantee the existence of a zero-sum spanning tree of $G$? The types of $G$ we consider are complete graphs, $K_3$-free graphs, $d$-trees, and maximal planar graphs. We also answer the question of when any such colouring contains a zero-sum spanning path or a zero-sum spanning tree of diameter at most $3$, showing in passing that the diameter-$3$ condition is best possible. Finally, we give, for $G = K_n$, a sharp bound on $|f(K_n)|$ by which an interesting zero-sum connectivity property is forced, namely that any two vertices are joined by a zero-sum path of length at most $4$. One feature of this paper is the proof of an Interpolation Lemma leading to a Master Theorem from which many of the above results follow and which can be of independent interest.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.