Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Upper Counterfactual Confidence Bounds: a New Optimism Principle for Contextual Bandits (2007.07876v4)

Published 15 Jul 2020 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: The principle of optimism in the face of uncertainty is one of the most widely used and successful ideas in multi-armed bandits and reinforcement learning. However, existing optimistic algorithms (primarily UCB and its variants) often struggle to deal with general function classes and large context spaces. In this paper, we study general contextual bandits with an offline regression oracle and propose a simple, generic principle to design optimistic algorithms, dubbed "Upper Counterfactual Confidence Bounds" (UCCB). The key innovation of UCCB is building confidence bounds in policy space, rather than in action space as is done in UCB. We demonstrate that these algorithms are provably optimal and computationally efficient in handling general function classes and large context spaces. Furthermore, we illustrate that the UCCB principle can be seamlessly extended to infinite-action general contextual bandits, provide the first solutions to these settings when employing an offline regression oracle.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: