Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Inverse Reinforcement Learning from a Gradient-based Learner (2007.07812v1)

Published 15 Jul 2020 in cs.LG and stat.ML

Abstract: Inverse Reinforcement Learning addresses the problem of inferring an expert's reward function from demonstrations. However, in many applications, we not only have access to the expert's near-optimal behavior, but we also observe part of her learning process. In this paper, we propose a new algorithm for this setting, in which the goal is to recover the reward function being optimized by an agent, given a sequence of policies produced during learning. Our approach is based on the assumption that the observed agent is updating her policy parameters along the gradient direction. Then we extend our method to deal with the more realistic scenario where we only have access to a dataset of learning trajectories. For both settings, we provide theoretical insights into our algorithms' performance. Finally, we evaluate the approach in a simulated GridWorld environment and on the MuJoCo environments, comparing it with the state-of-the-art baseline.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.