Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Newton Optimization on Helmholtz Decomposition for Continuous Games (2007.07804v3)

Published 15 Jul 2020 in cs.LG and stat.ML

Abstract: Many learning problems involve multiple agents optimizing different interactive functions. In these problems, the standard policy gradient algorithms fail due to the non-stationarity of the setting and the different interests of each agent. In fact, algorithms must take into account the complex dynamics of these systems to guarantee rapid convergence towards a (local) Nash equilibrium. In this paper, we propose NOHD (Newton Optimization on Helmholtz Decomposition), a Newton-like algorithm for multi-agent learning problems based on the decomposition of the dynamics of the system in its irrotational (Potential) and solenoidal (Hamiltonian) component. This method ensures quadratic convergence in purely irrotational systems and pure solenoidal systems. Furthermore, we show that NOHD is attracted to stable fixed points in general multi-agent systems and repelled by strict saddle ones. Finally, we empirically compare the NOHD's performance with that of state-of-the-art algorithms on some bimatrix games and in a continuous Gridworld environment.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.