Papers
Topics
Authors
Recent
2000 character limit reached

PVSNet: Pixelwise Visibility-Aware Multi-View Stereo Network (2007.07714v1)

Published 15 Jul 2020 in cs.CV

Abstract: Recently, learning-based multi-view stereo methods have achieved promising results. However, they all overlook the visibility difference among different views, which leads to an indiscriminate multi-view similarity definition and greatly limits their performance on datasets with strong viewpoint variations. In this paper, a Pixelwise Visibility-aware multi-view Stereo Network (PVSNet) is proposed for robust dense 3D reconstruction. We present a pixelwise visibility network to learn the visibility information for different neighboring images before computing the multi-view similarity, and then construct an adaptive weighted cost volume with the visibility information. Moreover, we present an anti-noise training strategy that introduces disturbing views during model training to make the pixelwise visibility network more distinguishable to unrelated views, which is different with the existing learning methods that only use two best neighboring views for training. To the best of our knowledge, PVSNet is the first deep learning framework that is able to capture the visibility information of different neighboring views. In this way, our method can be generalized well to different types of datasets, especially the ETH3D high-res benchmark with strong viewpoint variations. Extensive experiments show that PVSNet achieves the state-of-the-art performance on different datasets.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.