Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Static analysis of executable files by machine learning methods (2007.07501v1)

Published 15 Jul 2020 in cs.CR, cs.LG, and stat.ML

Abstract: The paper describes how to detect malicious executable files based on static analysis of their binary content. The stages of pre-processing and cleaning data extracted from different areas of executable files are analyzed. Methods of encoding categorical attributes of executable files are considered, as are ways to reduce the feature field dimension and select characteristic features in order to effectively represent samples of binary executable files for further training classifiers. An ensemble training approach was applied in order to aggregate forecasts from each classifier, and an ensemble of classifiers of various feature groups of executable file attributes was created in order to subsequently develop a system for detecting malicious files in an uninsulated environment.

Summary

We haven't generated a summary for this paper yet.