Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting feature imputability in the absence of ground truth (2007.07052v1)

Published 14 Jul 2020 in stat.ME and cs.LG

Abstract: Data imputation is the most popular method of dealing with missing values, but in most real life applications, large missing data can occur and it is difficult or impossible to evaluate whether data has been imputed accurately (lack of ground truth). This paper addresses these issues by proposing an effective and simple principal component based method for determining whether individual data features can be accurately imputed - feature imputability. In particular, we establish a strong linear relationship between principal component loadings and feature imputability, even in the presence of extreme missingness and lack of ground truth. This work will have important implications in practical data imputation strategies.

Citations (3)

Summary

We haven't generated a summary for this paper yet.