Papers
Topics
Authors
Recent
2000 character limit reached

Pose2RGBD. Generating Depth and RGB images from absolute positions

Published 14 Jul 2020 in cs.CV and eess.IV | (2007.07013v1)

Abstract: We propose a method at the intersection of Computer Vision and Computer Graphics fields, which automatically generates RGBD images using neural networks, based on previously seen and synchronized video, depth and pose signals. Since the models must be able to reconstruct both texture (RGB) and structure (Depth), it creates an implicit representation of the scene, as opposed to explicit ones, such as meshes or point clouds. The process can be thought of as neural rendering, where we obtain a function f : Pose -> RGBD, which we can use to navigate through the generated scene, similarly to graphics simulations. We introduce two new datasets, one based on synthetic data with full ground truth information, while the other one being recorded from a drone flight in an university campus, using only video and GPS signals. Finally, we propose a fully unsupervised method of generating datasets from videos alone, in order to train the Pose2RGBD networks. Code and datasets are available at:: https://gitlab.com/mihaicristianpirvu/pose2rgbd.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.