Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning Retrospective Knowledge with Reverse Reinforcement Learning

Published 9 Jul 2020 in cs.LG and cs.AI | (2007.06703v3)

Abstract: We present a Reverse Reinforcement Learning (Reverse RL) approach for representing retrospective knowledge. General Value Functions (GVFs) have enjoyed great success in representing predictive knowledge, i.e., answering questions about possible future outcomes such as "how much fuel will be consumed in expectation if we drive from A to B?". GVFs, however, cannot answer questions like "how much fuel do we expect a car to have given it is at B at time $t$?". To answer this question, we need to know when that car had a full tank and how that car came to B. Since such questions emphasize the influence of possible past events on the present, we refer to their answers as retrospective knowledge. In this paper, we show how to represent retrospective knowledge with Reverse GVFs, which are trained via Reverse RL. We demonstrate empirically the utility of Reverse GVFs in both representation learning and anomaly detection.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.