Papers
Topics
Authors
Recent
2000 character limit reached

A Feature Analysis for Multimodal News Retrieval

Published 13 Jul 2020 in cs.CL, cs.IR, and cs.LG | (2007.06390v2)

Abstract: Content-based information retrieval is based on the information contained in documents rather than using metadata such as keywords. Most information retrieval methods are either based on text or image. In this paper, we investigate the usefulness of multimodal features for cross-lingual news search in various domains: politics, health, environment, sport, and finance. To this end, we consider five feature types for image and text and compare the performance of the retrieval system using different combinations. Experimental results show that retrieval results can be improved when considering both visual and textual information. In addition, it is observed that among textual features entity overlap outperforms word embeddings, while geolocation embeddings achieve better performance among visual features in the retrieval task.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.