Adaptive minimax testing for circular convolution (2007.06388v1)
Abstract: Given observations from a circular random variable contaminated by an additive measurement error, we consider the problem of minimax optimal goodness-of-fit testing in a non-asymptotic framework. We propose direct and indirect testing procedures using a projection approach. The structure of the optimal tests depends on regularity and ill-posedness parameters of the model, which are unknown in practice. Therefore, adaptive testing strategies that perform optimally over a wide range of regularity and ill-posedness classes simultaneously are investigated. Considering a multiple testing procedure, we obtain adaptive i.e. assumption-free procedures and analyse their performance. Compared with the non-adaptive tests, their radii of testing face a deterioration by a log-factor. We show that for testing of uniformity this loss is unavoidable by providing a lower bound. The results are illustrated considering Sobolev spaces and ordinary or super smooth error densities.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.