Papers
Topics
Authors
Recent
2000 character limit reached

Generalized Aubry-André self-duality and Mobility edges in non-Hermitian quasi-periodic lattices

Published 13 Jul 2020 in cond-mat.dis-nn | (2007.06259v1)

Abstract: We demonstrate the existence of generalized Aubry-Andr\'e self-duality in a class of non-Hermitian quasi-periodic lattices with complex potentials. From the self-duality relations, the analytical expression of mobility edges is derived. Compared to Hermitian systems, mobility edges in non-Hermitian ones not only separate localized from extended states, but also indicate the coexistence of complex and real eigenenergies, making it possible a topological characterization of mobility edges. An experimental scheme, based on optical pulse propagation in synthetic photonic mesh lattices, is suggested to implement a non-Hermitian quasi-crystal displaying mobility edges.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.