Projected Latent Markov Chain Monte Carlo: Conditional Sampling of Normalizing Flows
Abstract: We introduce Projected Latent Markov Chain Monte Carlo (PL-MCMC), a technique for sampling from the high-dimensional conditional distributions learned by a normalizing flow. We prove that a Metropolis-Hastings implementation of PL-MCMC asymptotically samples from the exact conditional distributions associated with a normalizing flow. As a conditional sampling method, PL-MCMC enables Monte Carlo Expectation Maximization (MC-EM) training of normalizing flows from incomplete data. Through experimental tests applying normalizing flows to missing data tasks for a variety of data sets, we demonstrate the efficacy of PL-MCMC for conditional sampling from normalizing flows.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.