Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adaptive Superresolution in Deconvolution of Sparse Peaks (2007.05636v1)

Published 10 Jul 2020 in math.OC, cs.NA, eess.SP, and math.NA

Abstract: The aim of this paper is to investigate superresolution in deconvolution driven by sparsity priors. The observed signal is a convolution of an original signal with a continuous kernel.With the prior knowledge that the original signal can be considered as a sparse combination of Dirac delta peaks, we seek to estimate the positions and amplitudes of these peaks by solving a finite dimensional convex problem on a computational grid. Because, the support of the original signal may or may not be on this grid, by studying the discrete deconvolution of sparse peaks using L1-norm sparsity prior, we confirm recent observations that canonically the discrete reconstructions will result in multiple peaks at grid points adjacent to the location of the true peak. Owning to the complexity of this problem, we analyse carefully the de-convolution of single peaks on a grid and gain a strong insight about the dependence of the reconstructed magnitudes on the exact peak location. This in turn allows us to infer further information on recovering the location of the exact peaks i.e. to perform super-resolution. We analyze in detail the possible cases that can appear and based on our theoretical findings, we propose an self-driven adaptive grid approach that allows to perform superresolution in one-dimensional and multi-dimensional spaces. With the view that the current study can provide a further step in the development of more robust algorithms for the detection of single molecules in fluorescence microscopy or identification of characteristic frequencies in spectral analysis, we demonstrate how the proposed approach can recover sparse signals using simulated clusters of point sources (peaks) of low-resolution in one and two-dimensional spaces.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube