Papers
Topics
Authors
Recent
2000 character limit reached

Price Optimization in Fashion E-commerce

Published 10 Jul 2020 in cs.LG and stat.ML | (2007.05216v2)

Abstract: With the rapid growth in the fashion e-commerce industry, it is becoming extremely challenging for the E-tailers to set an optimal price point for all the products on the platform. By establishing an optimal price point, they can maximize overall revenue and profit for the platform. In this paper, we propose a novel machine learning and optimization technique to find the optimal price point at an individual product level. It comprises three major components. Firstly, we use a demand prediction model to predict the next day demand for each product at a certain discount percentage. Next step, we use the concept of price elasticity of demand to get the multiple demand values by varying the discount percentage. Thus we obtain multiple price demand pairs for each product and we have to choose one of them for the live platform. Typically fashion e-commerce has millions of products, so there can be many permutations. Each permutation will assign a unique price point for all the products, which will sum up to a unique revenue number. To choose the best permutation which gives maximum revenue, a linear programming optimization technique is used. We have deployed the above methods in the live production environment and conducted several AB tests. According to the AB test result, our model is improving the revenue by 1 percent and gross margin by 0.81 percent.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.