Improving Style-Content Disentanglement in Image-to-Image Translation (2007.04964v1)
Abstract: Unsupervised image-to-image translation methods have achieved tremendous success in recent years. However, it can be easily observed that their models contain significant entanglement which often hurts the translation performance. In this work, we propose a principled approach for improving style-content disentanglement in image-to-image translation. By considering the information flow into each of the representations, we introduce an additional loss term which serves as a content-bottleneck. We show that the results of our method are significantly more disentangled than those produced by current methods, while further improving the visual quality and translation diversity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.