Papers
Topics
Authors
Recent
2000 character limit reached

CompRes: A Dataset for Narrative Structure in News

Published 9 Jul 2020 in cs.CL | (2007.04874v2)

Abstract: This paper addresses the task of automatically detecting narrative structures in raw texts. Previous works have utilized the oral narrative theory by Labov and Waletzky to identify various narrative elements in personal stories texts. Instead, we direct our focus to news articles, motivated by their growing social impact as well as their role in creating and shaping public opinion. We introduce CompRes -- the first dataset for narrative structure in news media. We describe the process in which the dataset was constructed: first, we designed a new narrative annotation scheme, better suited for news media, by adapting elements from the narrative theory of Labov and Waletzky (Complication and Resolution) and adding a new narrative element of our own (Success); then, we used that scheme to annotate a set of 29 English news articles (containing 1,099 sentences) collected from news and partisan websites. We use the annotated dataset to train several supervised models to identify the different narrative elements, achieving an $F_1$ score of up to 0.7. We conclude by suggesting several promising directions for future work.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.