Papers
Topics
Authors
Recent
2000 character limit reached

Maximum Entropy Regularization and Chinese Text Recognition (2007.04651v1)

Published 9 Jul 2020 in cs.CV

Abstract: Chinese text recognition is more challenging than Latin text due to the large amount of fine-grained Chinese characters and the great imbalance over classes, which causes a serious overfitting problem. We propose to apply Maximum Entropy Regularization to regularize the training process, which is to simply add a negative entropy term to the canonical cross-entropy loss without any additional parameters and modification of a model. We theoretically give the convergence probability distribution and analyze how the regularization influence the learning process. Experiments on Chinese character recognition, Chinese text line recognition and fine-grained image classification achieve consistent improvement, proving that the regularization is beneficial to generalization and robustness of a recognition model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.