Papers
Topics
Authors
Recent
2000 character limit reached

Estimation of one-dimensional discrete-time quantum walk parameters by using machine learning algorithms (2007.04572v1)

Published 9 Jul 2020 in quant-ph

Abstract: Estimation of the coin parameter(s) is an important part of the problem of implementing more robust schemes for quantum simulation using quantum walks. We present the estimation of the quantum coin parameter used for one-dimensional discrete-time quantum walk evolution using machine learning algorithms on their probability distributions. We show that the models we have implemented are able to estimate these evolution parameters to a good accuracy level. We also implement a deep learning model that is able to predict multiple parameters simultaneously. Since discrete-time quantum walks can be used as quantum simulators, these models become important when extrapolating the quantum walk parameters from the probability distributions of the quantum system that is being simulated.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.