Papers
Topics
Authors
Recent
2000 character limit reached

NASGEM: Neural Architecture Search via Graph Embedding Method

Published 8 Jul 2020 in cs.AI and cs.LG | (2007.04452v2)

Abstract: Neural Architecture Search (NAS) automates and prospers the design of neural networks. Estimator-based NAS has been proposed recently to model the relationship between architectures and their performance to enable scalable and flexible search. However, existing estimator-based methods encode the architecture into a latent space without considering graph similarity. Ignoring graph similarity in node-based search space may induce a large inconsistency between similar graphs and their distance in the continuous encoding space, leading to inaccurate encoding representation and/or reduced representation capacity that can yield sub-optimal search results. To preserve graph correlation information in encoding, we propose NASGEM which stands for Neural Architecture Search via Graph Embedding Method. NASGEM is driven by a novel graph embedding method equipped with similarity measures to capture the graph topology information. By precisely estimating the graph distance and using an auxiliary Weisfeiler-Lehman kernel to guide the encoding, NASGEM can utilize additional structural information to get more accurate graph representation to improve the search efficiency. GEMNet, a set of networks discovered by NASGEM, consistently outperforms networks crafted by existing search methods in classification tasks, i.e., with 0.4%-3.6% higher accuracy while having 11%- 21% fewer Multiply-Accumulates. We further transfer GEMNet for COCO object detection. In both one-stage and twostage detectors, our GEMNet surpasses its manually-crafted and automatically-searched counterparts.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.