Papers
Topics
Authors
Recent
2000 character limit reached

The Scattering Compositional Learner: Discovering Objects, Attributes, Relationships in Analogical Reasoning (2007.04212v1)

Published 8 Jul 2020 in cs.LG, cs.AI, cs.LO, and stat.ML

Abstract: In this work, we focus on an analogical reasoning task that contains rich compositional structures, Raven's Progressive Matrices (RPM). To discover compositional structures of the data, we propose the Scattering Compositional Learner (SCL), an architecture that composes neural networks in a sequence. Our SCL achieves state-of-the-art performance on two RPM datasets, with a 48.7% relative improvement on Balanced-RAVEN and 26.4% on PGM over the previous state-of-the-art. We additionally show that our model discovers compositional representations of objects' attributes (e.g., shape color, size), and their relationships (e.g., progression, union). We also find that the compositional representation makes the SCL significantly more robust to test-time domain shifts and greatly improves zero-shot generalization to previously unseen analogies.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.