Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Decision Rules for Weak GMM

Published 8 Jul 2020 in econ.EM | (2007.04050v7)

Abstract: This paper studies optimal decision rules, including estimators and tests, for weakly identified GMM models. We derive the limit experiment for weakly identified GMM, and propose a theoretically-motivated class of priors which give rise to quasi-Bayes decision rules as a limiting case. Together with results in the previous literature, this establishes desirable properties for the quasi-Bayes approach regardless of model identification status, and we recommend quasi-Bayes for settings where identification is a concern. We further propose weighted average power-optimal identification-robust frequentist tests and confidence sets, and prove a Bernstein-von Mises-type result for the quasi-Bayes posterior under weak identification.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.