Papers
Topics
Authors
Recent
2000 character limit reached

Designing and Training of A Dual CNN for Image Denoising

Published 8 Jul 2020 in eess.IV and cs.CV | (2007.03951v1)

Abstract: Deep convolutional neural networks (CNNs) for image denoising have recently attracted increasing research interest. However, plain networks cannot recover fine details for a complex task, such as real noisy images. In this paper, we propsoed a Dual denoising Network (DudeNet) to recover a clean image. Specifically, DudeNet consists of four modules: a feature extraction block, an enhancement block, a compression block, and a reconstruction block. The feature extraction block with a sparse machanism extracts global and local features via two sub-networks. The enhancement block gathers and fuses the global and local features to provide complementary information for the latter network. The compression block refines the extracted information and compresses the network. Finally, the reconstruction block is utilized to reconstruct a denoised image. The DudeNet has the following advantages: (1) The dual networks with a parse mechanism can extract complementary features to enhance the generalized ability of denoiser. (2) Fusing global and local features can extract salient features to recover fine details for complex noisy images. (3) A Small-size filter is used to reduce the complexity of denoiser. Extensive experiments demonstrate the superiority of DudeNet over existing current state-of-the-art denoising methods.

Citations (132)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.