Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Discrete Convex Min-Max Formula for Box-TDI Polyhedra (2007.03507v3)

Published 7 Jul 2020 in math.CO

Abstract: A min-max formula is proved for the minimum of an integer-valued separable discrete convex function where the minimum is taken over the set of integral elements of a box total dual integral (box-TDI) polyhedron. One variant of the theorem uses the notion of conjugate function (a fundamental concept in non-linear optimization) but we also provide another version that avoids conjugates, and its spirit is conceptually closer to the standard form of classic min-max theorems in combinatorial optimization. The presented framework provides a unified background for separable convex minimization over the set of integral elements of the intersection of two integral base-polyhedra, submodular flows, L-convex sets, and polyhedra defined by totally unimodular (TU) matrices. As an unexpected application, we show how a wide class of inverse combinatorial optimization problems can be covered by this new framework.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.