Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Single Shot MC Dropout Approximation (2007.03293v1)

Published 7 Jul 2020 in cs.LG and stat.ML

Abstract: Deep neural networks (DNNs) are known for their high prediction performance, especially in perceptual tasks such as object recognition or autonomous driving. Still, DNNs are prone to yield unreliable predictions when encountering completely new situations without indicating their uncertainty. Bayesian variants of DNNs (BDNNs), such as MC dropout BDNNs, do provide uncertainty measures. However, BDNNs are slow during test time because they rely on a sampling approach. Here we present a single shot MC dropout approximation that preserves the advantages of BDNNs without being slower than a DNN. Our approach is to analytically approximate for each layer in a fully connected network the expected value and the variance of the MC dropout signal. We evaluate our approach on different benchmark datasets and a simulated toy example. We demonstrate that our single shot MC dropout approximation resembles the point estimate and the uncertainty estimate of the predictive distribution that is achieved with an MC approach, while being fast enough for real-time deployments of BDNNs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kai Brach (2 papers)
  2. Beate Sick (15 papers)
  3. Oliver Dürr (16 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.