Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Auto-CASH: Autonomous Classification Algorithm Selection with Deep Q-Network (2007.03254v1)

Published 7 Jul 2020 in cs.LG and stat.ML

Abstract: The great amount of datasets generated by various data sources have posed the challenge to machine learning algorithm selection and hyperparameter configuration. For a specific machine learning task, it usually takes domain experts plenty of time to select an appropriate algorithm and configure its hyperparameters. If the problem of algorithm selection and hyperparameter optimization can be solved automatically, the task will be executed more efficiently with performance guarantee. Such problem is also known as the CASH problem. Early work either requires a large amount of human labor, or suffers from high time or space complexity. In our work, we present Auto-CASH, a pre-trained model based on meta-learning, to solve the CASH problem more efficiently. Auto-CASH is the first approach that utilizes Deep Q-Network to automatically select the meta-features for each dataset, thus reducing the time cost tremendously without introducing too much human labor. To demonstrate the effectiveness of our model, we conduct extensive experiments on 120 real-world classification datasets. Compared with classical and the state-of-art CASH approaches, experimental results show that Auto-CASH achieves better performance within shorter time.

Citations (1)

Summary

We haven't generated a summary for this paper yet.