Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Armed Bandits with Local Differential Privacy (2007.03121v1)

Published 6 Jul 2020 in cs.LG, cs.CR, and stat.ML

Abstract: This paper investigates the problem of regret minimization for multi-armed bandit (MAB) problems with local differential privacy (LDP) guarantee. In stochastic bandit systems, the rewards may refer to the users' activities, which may involve private information and the users may not want the agent to know. However, in many cases, the agent needs to know these activities to provide better services such as recommendations and news feeds. To handle this dilemma, we adopt differential privacy and study the regret upper and lower bounds for MAB algorithms with a given LDP guarantee. In this paper, we prove a lower bound and propose algorithms whose regret upper bounds match the lower bound up to constant factors. Numerical experiments also confirm our conclusions.

Citations (43)

Summary

We haven't generated a summary for this paper yet.