Papers
Topics
Authors
Recent
2000 character limit reached

Interpreting Stellar Spectra with Unsupervised Domain Adaptation

Published 6 Jul 2020 in astro-ph.SR, astro-ph.GA, and stat.ML | (2007.03112v1)

Abstract: We discuss how to achieve mapping from large sets of imperfect simulations and observational data with unsupervised domain adaptation. Under the hypothesis that simulated and observed data distributions share a common underlying representation, we show how it is possible to transfer between simulated and observed domains. Driven by an application to interpret stellar spectroscopic sky surveys, we construct the domain transfer pipeline from two adversarial autoencoders on each domains with a disentangling latent space, and a cycle-consistency constraint. We then construct a differentiable pipeline from physical stellar parameters to realistic observed spectra, aided by a supplementary generative surrogate physics emulator network. We further exemplify the potential of the method on the reconstructed spectra quality and to discover new spectral features associated to elemental abundances.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.