Describing quantum metrology with erasure errors using weight distributions of classical codes
Abstract: Quantum sensors are expected to be a prominent use-case of quantum technologies, but in practice, noise easily degrades their performance. Quantum sensors can for instance be afflicted with erasure errors. Here, we consider using quantum probe states with a structure that corresponds to classical $[n,k,d]$ binary block codes of minimum distance $d \geq t+1$. We obtain bounds on the ultimate precision that these probe states can give for estimating the unknown magnitude of a classical field after at most $t$ qubits of the quantum probe state are erased. We show that the quantum Fisher information is proportional to the variances of the weight distributions of the corresponding $2t$ shortened codes. If the shortened codes of a fixed code with $d \geq t+1$ have a non-trivial weight distribution, then the probe states obtained by concatenating this code with repetition codes of increasing length enable asymptotically optimal field-sensing that passively tolerates up to $t$ erasure errors.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.