Papers
Topics
Authors
Recent
2000 character limit reached

Online Learning of Quantum States

Published 25 Feb 2018 in quant-ph and cs.LG | (1802.09025v3)

Abstract: Suppose we have many copies of an unknown $n$-qubit state $\rho$. We measure some copies of $\rho$ using a known two-outcome measurement $E_{1}$, then other copies using a measurement $E_{2}$, and so on. At each stage $t$, we generate a current hypothesis $\sigma_{t}$ about the state $\rho$, using the outcomes of the previous measurements. We show that it is possible to do this in a way that guarantees that $|\operatorname{Tr}(E_{i} \sigma_{t}) - \operatorname{Tr}(E_{i}\rho) |$, the error in our prediction for the next measurement, is at least $\varepsilon$ at most $\operatorname{O}!\left(n / \varepsilon2 \right) $ times. Even in the "non-realizable" setting---where there could be arbitrary noise in the measurement outcomes---we show how to output hypothesis states that do significantly worse than the best possible states at most $\operatorname{O}!\left(\sqrt {Tn}\right) $ times on the first $T$ measurements. These results generalize a 2007 theorem by Aaronson on the PAC-learnability of quantum states, to the online and regret-minimization settings. We give three different ways to prove our results---using convex optimization, quantum postselection, and sequential fat-shattering dimension---which have different advantages in terms of parameters and portability.

Citations (90)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.