Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Probabilistic Prediction of Geomagnetic Storms and the K$_{\textrm{p}}$ Index (2007.02733v1)

Published 6 Jul 2020 in physics.space-ph and stat.AP

Abstract: Geomagnetic activity is often described using summary indices to summarize the likelihood of space weather impacts, as well as when parameterizing space weather models. The geomagnetic index $\text{K}\text{p}$ in particular, is widely used for these purposes. Current state-of-the-art forecast models provide deterministic $\text{K}\text{p}$ predictions using a variety of methods -- including empirically-derived functions, physics-based models, and neural networks -- but do not provide uncertainty estimates associated with the forecast. This paper provides a sample methodology to generate a 3-hour-ahead $\text{K}\text{p}$ prediction with uncertainty bounds and from this provide a probabilistic geomagnetic storm forecast. Specifically, we have used a two-layered architecture to separately predict storm ($\text{K}\text{p}\geq 5-$) and non-storm cases. As solar wind-driven models are limited in their ability to predict the onset of transient-driven activity we also introduce a model variant using solar X-ray flux to assess whether simple models including proxies for solar activity can improve the predictions of geomagnetic storm activity with lead times longer than the L1-to-Earth propagation time. By comparing the performance of these models we show that including operationally-available information about solar irradiance enhances the ability of predictive models to capture the onset of geomagnetic storms and that this can be achieved while also enabling probabilistic forecasts.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com