Papers
Topics
Authors
Recent
Search
2000 character limit reached

The dual approach to non-negative super-resolution: perturbation analysis

Published 6 Jul 2020 in math.OC | (2007.02708v2)

Abstract: We study the problem of super-resolution, where we recover the locations and weights of non-negative point sources from a few samples of their convolution with a Gaussian kernel. It has been shown that exact recovery is possible by minimising the total variation norm of the measure, and a practical way of achieve this is by solving the dual problem. In this paper, we study the stability of solutions with respect to the solutions dual problem, both in the case of exact measurements and in the case of measurements with additive noise. In particular, we establish a relationship between perturbations in the dual variable and perturbations in the primal variable around the optimiser and a similar relationship between perturbations in the dual variable around the optimiser and the magnitude of the additive noise in the measurements. Our analysis is based on a quantitative version of the implicit function theorem.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.