Papers
Topics
Authors
Recent
Search
2000 character limit reached

Temporal Sub-sampling of Audio Feature Sequences for Automated Audio Captioning

Published 6 Jul 2020 in eess.AS, cs.LG, and cs.SD | (2007.02676v1)

Abstract: Audio captioning is the task of automatically creating a textual description for the contents of a general audio signal. Typical audio captioning methods rely on deep neural networks (DNNs), where the target of the DNN is to map the input audio sequence to an output sequence of words, i.e. the caption. Though, the length of the textual description is considerably less than the length of the audio signal, for example 10 words versus some thousands of audio feature vectors. This clearly indicates that an output word corresponds to multiple input feature vectors. In this work we present an approach that focuses on explicitly taking advantage of this difference of lengths between sequences, by applying a temporal sub-sampling to the audio input sequence. We employ a sequence-to-sequence method, which uses a fixed-length vector as an output from the encoder, and we apply temporal sub-sampling between the RNNs of the encoder. We evaluate the benefit of our approach by employing the freely available dataset Clotho and we evaluate the impact of different factors of temporal sub-sampling. Our results show an improvement to all considered metrics.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.