Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric Attention for Prediction of Differential Properties in 3D Point Clouds (2007.02571v3)

Published 6 Jul 2020 in cs.CV

Abstract: Estimation of differential geometric quantities in discrete 3D data representations is one of the crucial steps in the geometry processing pipeline. Specifically, estimating normals and sharp feature lines from raw point cloud helps improve meshing quality and allows us to use more precise surface reconstruction techniques. When designing a learnable approach to such problems, the main difficulty is selecting neighborhoods in a point cloud and incorporating geometric relations between the points. In this study, we present a geometric attention mechanism that can provide such properties in a learnable fashion. We establish the usefulness of the proposed technique with several experiments on the prediction of normal vectors and the extraction of feature lines.

Citations (4)

Summary

We haven't generated a summary for this paper yet.