Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Momentum Accelerates Evolutionary Dynamics (2007.02449v1)

Published 5 Jul 2020 in cs.LG, cs.IT, math.DS, math.IT, and stat.ML

Abstract: We combine momentum from machine learning with evolutionary dynamics, where momentum can be viewed as a simple mechanism of intergenerational memory. Using information divergences as Lyapunov functions, we show that momentum accelerates the convergence of evolutionary dynamics including the replicator equation and Euclidean gradient descent on populations. When evolutionarily stable states are present, these methods prove convergence for small learning rates or small momentum, and yield an analytic determination of the relative decrease in time to converge that agrees well with computations. The main results apply even when the evolutionary dynamic is not a gradient flow. We also show that momentum can alter the convergence properties of these dynamics, for example by breaking the cycling associated to the rock-paper-scissors landscape, leading to either convergence to the ordinarily non-absorbing equilibrium, or divergence, depending on the value and mechanism of momentum.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.