Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Bifurcations of thresholds in essential spectra of elliptic operators under localized non-Hermitian perturbations (2007.02258v2)

Published 5 Jul 2020 in math-ph, math.MP, and physics.optics

Abstract: We consider the operator $${\cal H} = {\cal H}' -\frac{\partial2\ }{\partial x_d2} \quad\text{on}\quad\omega\times\mathbb{R}$$ subject to the Dirichlet or Robin condition, where a domain $\omega\subseteq\mathbb{R}{d-1}$ is bounded or unbounded. The symbol ${\cal H}'$ stands for a second order self-adjoint differential operator on $\omega$ such that the spectrum of the operator ${\cal H}'$ contains several discrete eigenvalues $\Lambda_{j}$, $j=1,\ldots, m$. These eigenvalues are thresholds in the essential spectrum of the operator ${\cal H}$. We study how these thresholds bifurcate once we add a small localized perturbation $\epsilon{\cal L}(\epsilon)$ to the operator ${\cal H}$, where $\epsilon$ is a small positive parameter and ${\cal L}(\epsilon)$ is an abstract, not necessarily symmetric operator. We show that these thresholds bifurcate into eigenvalues and resonances of the operator ${\cal H}$ in the vicinity of $\Lambda_j$ for sufficiently small $\epsilon$. We prove effective simple conditions determining the existence of these resonances and eigenvalues and find the leading terms of their asymptotic expansions. Our analysis applies to generic non-self-adjoint perturbations and, in particular, to perturbations characterized by the parity-time ($PT$) symmetry. Potential applications of our result embrace a broad class of physical systems governed by dispersive or diffractive effects. We use our findings to develop a scheme for a controllable generation of non-Hermitian optical states with normalizable power and real part of the complex-valued propagation constant lying in the continuum. The corresponding eigenfunctions can be interpreted as an optical generalization of bound states embedded in the continuum. For a particular example, the persistence of asymptotic expansions is confirmed with direct numerical evaluation of the perturbed spectrum.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.