Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Calibration Supported Robust Projective Structure-from-Motion (2007.02045v1)

Published 4 Jul 2020 in cs.CV

Abstract: Typical Structure-from-Motion (SfM) pipelines rely on finding correspondences across images, recovering the projective structure of the observed scene and upgrading it to a metric frame using camera self-calibration constraints. Solving each problem is mainly carried out independently from the others. For instance, camera self-calibration generally assumes correct matches and a good projective reconstruction have been obtained. In this paper, we propose a unified SfM method, in which the matching process is supported by self-calibration constraints. We use the idea that good matches should yield a valid calibration. In this process, we make use of the Dual Image of Absolute Quadric projection equations within a multiview correspondence framework, in order to obtain robust matching from a set of putative correspondences. The matching process classifies points as inliers or outliers, which is learned in an unsupervised manner using a deep neural network. Together with theoretical reasoning why the self-calibration constraints are necessary, we show experimental results demonstrating robust multiview matching and accurate camera calibration by exploiting these constraints.

Summary

We haven't generated a summary for this paper yet.