Papers
Topics
Authors
Recent
2000 character limit reached

PsychFM: Predicting your next gamble

Published 3 Jul 2020 in cs.LG, cs.AI, and stat.ML | (2007.01833v1)

Abstract: There is a sudden surge to model human behavior due to its vast and diverse applications which includes modeling public policies, economic behavior and consumer behavior. Most of the human behavior itself can be modeled into a choice prediction problem. Prospect theory is a theoretical model that tries to explain the anomalies in choice prediction. These theories perform well in terms of explaining the anomalies but they lack precision. Since the behavior is person dependent, there is a need to build a model that predicts choices on a per-person basis. Looking on at the average persons choice may not necessarily throw light on a particular person's choice. Modeling the gambling problem on a per person basis will help in recommendation systems and related areas. A novel hybrid model namely psychological factorisation machine ( PsychFM ) has been proposed that involves concepts from machine learning as well as psychological theories. It outperforms the popular existing models namely random forest and factorisation machines for the benchmark dataset CPC-18. Finally,the efficacy of the proposed hybrid model has been verified by comparing with the existing models.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.