Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Safe Reinforcement Learning with Mixture Density Network: A Case Study in Autonomous Highway Driving (2007.01698v3)

Published 2 Jul 2020 in eess.SY and cs.SY

Abstract: This paper presents a safe reinforcement learning system for automated driving that benefits from multimodal future trajectory predictions. We propose a safety system that consists of two safety components: a heuristic safety and a learning-based safety. The heuristic safety module is based on common driving rules. On the other hand, the learning-based safety module is a data-driven safety rule that learns safety patterns from driving data. Specifically, it utilizes mixture density recurrent neural networks (MD-RNN) for multimodal future trajectory predictions to accelerate the learning progress. Our simulation results demonstrate that the proposed safety system outperforms previously reported results in terms of average reward and number of collisions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.