Papers
Topics
Authors
Recent
2000 character limit reached

Computation of minimal covariants bases for 2D coupled constitutive laws

Published 3 Jul 2020 in math.RT and physics.class-ph | (2007.01576v2)

Abstract: We produce minimal integrity bases for both isotropic and hemitropic invariant algebras (and more generally covariant algebras) of most common bidimensional constitutive tensors and -- possibly coupled -- laws, including piezoelectricity law, photoelasticity, Eshelby and elasticity tensors, complex viscoelasticity tensor, Hill elasto-plasticity, and (totally symmetric) fabric tensors up to twelfth-order. The concept of covariant, which extends that of invariant is explained and motivated. It appears to be much more useful for applications. All the tools required to obtain these results are explained in detail and a cleaning algorithm is formulated to achieve minimality in the isotropic case. The invariants and covariants are first expressed in complex forms and then in tensorial forms, thanks to explicit translation formulas which are provided. The proposed approach also applies to any $n$-uplet of bidimensional constitutive tensors.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.