Papers
Topics
Authors
Recent
Search
2000 character limit reached

Variance reduction for Riemannian non-convex optimization with batch size adaptation

Published 3 Jul 2020 in math.OC, cs.LG, and stat.ML | (2007.01494v1)

Abstract: Variance reduction techniques are popular in accelerating gradient descent and stochastic gradient descent for optimization problems defined on both Euclidean space and Riemannian manifold. In this paper, we further improve on existing variance reduction methods for non-convex Riemannian optimization, including R-SVRG and R-SRG/R-SPIDER with batch size adaptation. We show that this strategy can achieve lower total complexities for optimizing both general non-convex and gradient dominated functions under both finite-sum and online settings. As a result, we also provide simpler convergence analysis for R-SVRG and improve complexity bounds for R-SRG under finite-sum setting. Specifically, we prove that R-SRG achieves the same near-optimal complexity as R-SPIDER without requiring a small step size. Empirical experiments on a variety of tasks demonstrate effectiveness of proposed adaptive batch size scheme.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.