Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Maximizing Cohesion and Separation in Graph Representation Learning: A Distance-aware Negative Sampling Approach (2007.01423v2)

Published 2 Jul 2020 in cs.LG, cs.SI, and stat.ML

Abstract: The objective of unsupervised graph representation learning (GRL) is to learn a low-dimensional space of node embeddings that reflect the structure of a given unlabeled graph. Existing algorithms for this task rely on negative sampling objectives that maximize the similarity in node embeddings at nearby nodes (referred to as "cohesion") by maintaining positive and negative corpus of node pairs. While positive samples are drawn from node pairs that co-occur in short random walks, conventional approaches construct negative corpus by uniformly sampling random pairs, thus ignoring valuable information about structural dissimilarity among distant node pairs (referred to as "separation"). In this paper, we present a novel Distance-aware Negative Sampling (DNS) which maximizes the separation of distant node-pairs while maximizing cohesion at nearby node-pairs by setting the negative sampling probability proportional to the pair-wise shortest distances. Our approach can be used in conjunction with any GRL algorithm and we demonstrate the efficacy of our approach over baseline negative sampling methods over downstream node classification tasks on a number of benchmark datasets and GRL algorithms. All our codes and datasets are available at https://github.com/Distance-awareNS/DNS/.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)