Papers
Topics
Authors
Recent
2000 character limit reached

Rate-improved Inexact Augmented Lagrangian Method for Constrained Nonconvex Optimization

Published 2 Jul 2020 in math.OC | (2007.01284v2)

Abstract: First-order methods have been studied for nonlinear constrained optimization within the framework of the augmented Lagrangian method (ALM) or penalty method. We propose an improved inexact ALM (iALM) and conduct a unified analysis for nonconvex problems with either affine equality or nonconvex constraints. Under certain regularity conditions (that are also assumed by existing works), we show an $\tilde{O}(\varepsilon{-\frac{5}{2}})$ complexity result for a problem with a nonconvex objective and affine equality constraints and an $\tilde{O}(\varepsilon{-3})$ complexity result for a problem with a nonconvex objective and nonconvex constraints, where the complexity is measured by the number of first-order oracles to yield an $\varepsilon$-KKT solution. Both results are the best known. The same-order complexity results have been achieved by penalty methods. However, two different analysis techniques are used to obtain the results, and more importantly, the penalty methods generally perform significantly worse than iALM in practice. Our improved iALM and analysis close the gap between theory and practice. Numerical experiments on nonconvex problems with affine equality or nonconvex constraints are provided to demonstrate the effectiveness of our proposed method.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.